
Abstract — The paper presents the Lorentz force and Maxwell's 
stress formulas that give the same result of global force calculation 
for FE method. Edge element method using vector potential A and 
nodal element method using scalar potential Ω are considered. 
The formulas have been obtained from virtual work principle that 
has been adopted to the FE model. The FE network must be 
regular to obtain the equivalent formulas. The results of force 
calculation using proposed methods have been compared with 
analytical results. The system with three cuboidal magnets has 
been analyzed. Moreover the forces in the system given by TEAM 
Workshops Problem No. 7 have been considered. 

I. INTRODUCTION 
The different methods have been used to describe the global 

magnetic force such as virtual work principle (VP), Maxwell's 
stresses (MS), Lorentz formula, equivalent currents (EC) [1,2,3]. 
For the exact solution of field equations all these methods lead to 
the same result and the methods are considered to be equivalent. 
However the commonly used FE packages do not guarantee the 
identity of the results, e.g. the result of MS differs from the result 
of EC. The paper deals with the equivalence of global force 
description for FE method. Edge element method (EEM) using 
magnetic vector potential A and nodal element method (NEM) 
using scalar potential Ω are considered.  

II. VIRTUAL WORK APPROACH TO THE FE SOLUTION 
The force acting on the region VD with body D is analyzed. 

Let us assume that we have solved FE equations with the 
unknown vector ϕ of edge values of A or with unknown vector 
Ω of nodal values of Ω. Using these vectors we can describe 
the field sources (FSs) that are caused both by the conducting 
currents and by equivalent magnetizing currents that model 
ferromagnetic material and permanent magnets. For EEM the 
field sources represent mmfs θ associated with element edges, 
and for NEM the sources are given by nodal flux injections Φ,  

ϕθ CRC 0µ= T ,    ΩΛΦ KK 0µ= T .       (1a,b) 

Here C is the matrix that transposes vector ϕ into the vector of 
facet values of flux densities, K is the matrix that transforms Ω 
into vector of edge values of gradΩ and Rµ0 or Λµ0 is the 
reluctance or permeance matrix of EEM or NEM equations 
that are calculated for permeability µ equal to vacuum 
permeability µ0. 

First, in order to describe the magnetic force acting on D 
the virtual principle was applied and the virtual displacement 
of FSs has been considered, e.g. the virtual displacement in the 
direction of axis x, see Fig.1. In the FE models we should 
consider the discrete displacement, e.g. displacement of ±hx. In 
the virtual displacement of FSs the FE network should be kept 
constant. This requirement can be satisfied for the discrete 

systems of regular grid in displacement direction, e.g. see Fig. 1 
where height of the elements in the direction of x are identical 
and hxi=hxi+1=hx. For virtual displacement in the x-direction 
virtual work principle gives the following formulas 
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where k+, k− are the conversion matrices which project the 
displacement of mmfs θ or flux injections Φ by a distance ± hx 
in the direction of axis x. 

III. FORCE DENSITY AND MAXWELL STRESS FORMULAS 
The presented above formulas (2) can be transformed into 

the unified Lorentz force formulas that describe the force by its 
volume density f using: (a) equivalent magnetizing and 
conducting currents for vector potential formulation and (b) 
equivalent nodal flux injections for scalar potential 
formulation. In the obtained formulas the force Fx acting on 
the region of the i-th element is described as follows 
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Here θyq,i+p, θzq,i+p (q=1,2; p=0,1) are the components of vector 
θ related to edges eyq,i+p, ezq,i+p; φyq,i, φzqi are the facet values of 
B for facets Sxq,i, Szqi; Φq,i, Φq,i+1(q=1,..,4) are the components 
of vector Φ for nodes Qq,i, Qq,i+1, uxq,i is the edge value of H for 
edge exq,i, see Fig.1. 
 For regular grid the force formulas (3) can be transformed into 
the MS formulas that describe the mean values of stress tensor 
components in elements. For the i-th element in Fig. 1 we obtain 
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(5b) 
Equations (4a,b) relate to the EEM and (5a,b) to the NEM, 
Buq,i (q=1,2; u=x,y,z) is the value of the u-th component of flux 
density B for facet Suq,i and Huq,i is the value of the u-th 
component of H for edge euq,i - Fig.1. 

It should be noticed that in (4a) the product Bx1iBx2i represents 
the mean value of 2

xB  for the i-th element, ixixxi BBB ,2,1
2 = . 

However in the classical approaches mean value of 2
xB is 
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Fig.1. FE network of regular elements in the direction of axis x 

The mean values of 2
yH  and 2

zH  in (5a) are represented by the 
products of edge values of H for edges eyq,i, eyq,i+1 and ezq,i, ezq,i+1. 
The description of the mean value of 2

yB  in (4a) and 2
yH , 2

zH  in 
(5a) is the particular feature of the presented MS formulas.  

The formulas (4), (5) have been obtained from (3). Thus it is 
easy to prove that if the region VD is empty and subdivided into 
regular elements the force calculated from (4), (5) is exactly 
equal to zero, i.e. (4), (5) give a faultless result (with rounding 
error accuracy). This is the most advantageous property of the 
presented methods.  

IV. EXAMPLES 
The presented formulas has been verified be comparing the 

FE solution with the analytical solution. The forces acting in 
the system of cuboidal permanent magnets (PMs) have been 
analyzed [4]. The magnets are placed in the unbounded empty 
space. The permeability of PMs is assumed to be equal to µ0. 
The results of force calculation using FE method and formulas 
(2-5) have been compared with the exact analytical results. In 
order to obtain the analytical results a special software was 
prepared. The analytical method presented in [5] has been 
generalized and adopted for multi-magnet system. Here the 
results for system of 3 PMs are discussed (Fig. 2). The relative 
value of force Fx acting on PM I is calculated. This value is 
defined as follows )/( 0

2 lwHFF cxxr µ= , where Hc is the coercive 
force and lw is the area of active surface of PM I. Here, we 
present the selected results for system of w=l=2wa+∆w, 
δ=0.3w, h=0.4w. The calculations have been performed for 
different relative values of ∆w and constant value of 2wa+∆w. 
First the models of regular mesh in PM region are considered. In 
the models hy=hz=l/24, hx=h/8=δ/6. The grid consists of about 
1.4×106 hexahedrons. Fig. 3 demonstrates the exact values of 
Fxr and the relative error ε in Fxr calculation using FEM. Three 
methods have been applied: (a) EEM with formulas (4), (b) 
EEM with classical procedure using (6b), and (c) NEM with 
formulas (5). Is should be noticed that the results of methods (a) 
and (c) are independent of the location of the integration 
surface around D, e.g. the results for integration over the 
surface in the i-th and the i−1st element in Fig.1 are the same. 
The procedure (b) does not satisfy this property. 

 
Fig.2. Considered system with 3 cuboidal permanent magnets (PM) 
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Fig.3. Relative force and error ε of force calculation for methods (a), (b), (c) 

The discussed MS formulas have been used in the calcula-
tions of force between the coil and conducting plate with hole, 
see TEAM Problem No. 7 [6]. The A-T-T0 formulation with EEM 
was applied [6]. The calculations of force have been performed 
for different values of distance b between the integration plane S 
and the upper boundary surface of plate (S lies between coil and 
plate). For all considered values of b formulas (4) give identical 
result. The maximum value of repulsive force Fr is 2.5493 N. 
However classical approaches with (6) give different values, e.g. 
from (6a) we obtain Fr=2.5357 N for b=9 mm, Fr=2.5278 N for 
b=21 mm, Fr=2.5122 N for b=27 mm, and from (6b) Fr=2.5228 N 
for b=9 mm, Fr=2.5064 N for b=21 mm, Fr=2.4750 N for 
b=27 mm. Thus the values of Fr differ even of 2%. 

V. CONCLUSION 

The presented methods of force calculation provide good 
accuracy. In the region with regular mesh the calculated value 
of force acting on the empty space is exactly equal to zero. The 
results are independent of the location of integration surface. 
The most important shortcoming of equivalent formulas is the 
requirement of homogeneity in relation to the FE grid. 
However even for non-regular mesh the methods give 
satisfactory results. The equations of EEM/NEM are similar to 
the equations of cells method (CM) and finite integration 
technique (FIT) [6]. Therefore, the presented formulas of force 
calculation can be easy adopted for CM and FIT. 
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